
Injection induced instabilities and chaos in electrohydrodynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 SA499

(http://iopscience.iop.org/0953-8984/2/S/079)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 11:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/S
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) SA499-SA503. Printed in the UK 

Injection induced instabilities and chaos in 
electro hydrodynamics 

A Castellanos 
Departmento Electr6nica y Electromagnetismo, Facultad de Fisica, Avenida Reina 
Mercedes s/n, 41012 Sevilla, Spain 

Received 6 August 1990 

Abstract. The Coulomb force exerted by an electric field on any charge present 
in a dielectric liquid may induce fluid motion. At high applied electric fields in 
an industrial grade insulating liquid, charge carriers are created at  metallic/liquid 
interfaces, a process referred to as ion injection, and result from electrochemical 
reactions. Recently it has become possible to reproduce these injection processes 
and carefully designed experiments may be related to analytical models. In this 
review we shall focus attention on the electruhydrodynamic instabilities and chaos 
induced by unipolar charge injection. 

1. Introduction 

Electrohydrodynamics (EHD) is a mature science, which can be regarded as a branch 
of electrodynamics of moving media concerned with the interaction of dielectric fluids 
with electric fields, and its applications form the basis of major industries [l]. Recently 
fundamental advances in the electrodics of metal/liquid interfaces, together with new 
techniques to control the injection of charge and novel methods of purification of 
insulating liquids, have permitted us to  relate analytical models to  a set of carefully 
controlled experiments. The motive force in these experiments is the Coulomb force 
acting upon the charge carriers that  have been injected at the electrode/liquid interface 
by means of electrochemical reactions. The aim of this paper is to  consider the EHD 
instabilities and chaos produced by Coulomb forces in these insulating liquids when 
subjected to  stationary DC voltages. The EHD phenomena produced when a step 
voltage (or an AC voltage) is applied will not be considered (see [2] for a review 
on these transient regimes). Also the case of non-isothermal conditions will not be 
examined, as a recent review has been given in [3]. 

2. Definition of the problem 

2.1. Basic equations 

Since the hydrodynamics of a dielectric fluid is quasi-electrostatical, the Maxwell equa- 
tions reduce to  the irrotational nature of the electric field E ,  the Gauss law and the 
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charge conservation equation. The equations of motion are those of a viscous incom- 
pressible liquid, i.e. the Navier-Stokes equation and the continuity equation. The only 
modification is a body force of electrical origin, f, given by [l] 

where q is the free charge density, E the permittivity, p the mass density and 0 the 
absolute temperature. The first term, called the Coulomb force, is the force per unit 
volume on a medium containing free electric charge. It is the strongest EHD force term 
and usually dominates when DC electric fields are present. The second term, called 
the dielectric force, is due to the force exerted on a dielectric liquid by a non-uniform 
electric field. I t  is usually weaker than the Coulomb force and only dominates when 
an AC electric field of high enough frequency is imposed. The third term, called the 
electrostrictive term, being the gradient of an scalar is treated as a modification to 
the fluid pressure. 

2.2. Constitutive law for the current density 

In dielectric liquids of high enough resistivity Ohm's law and electroneutrality often 
fail to  be valid. Conduction in these insulating liquids when subjected to intense 
electric fields is mainly controlled by electrode/liquid interface phenomena that create 
new charge carriers of the same polarity as the electrode that are injected into the 
liquid. The constitutive law for the current density that results from the passage of 
the injected ions is 

The first term gives the contribution of the injected ions that under the influence 
of the electric field move relative to  the fluid with a velocity ICE with I< the ionic 
mobility. The second term accounts for molecular diffusion with D the charge diffusion 
coefficient. The third term is due to  convection of charge density by the velocity field. 

2.3. Charge relaxation 

Using Gauss's law and equation (1) in the charge conservation equation, neglecting 
diffusion, we have 

whose solution is q = qo(l +t/r)-l  with 7 = ~ / I i ' q ,  the algebraic bulk relaxation time. 
This solution is valid on d r /d t  = KE + v ,  so that unless a given element of liquid 
can be traced via a particle line to  a source of charge, it will support no bulk charge 
density. 

2.4. Boundary conditions 

For the mechanical problem the boundary conditions are the usual no-slip conditions 
a i  the electrodes, v = 0. For the Poisson equation they become $ = 6, on the injec- 
tor and 6 = 0 on the collector. For the charge density equation we need to  specify 
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the way in which charge is injected into the liquid at  one boundary and removed a t  
the other. An injection law relating charge density to electric field has been deduced 
and experimentally verified [4] for bare electrodes. I t  turns out that  for an ample 
range of values of field strength ( lo3 5 E 5 5 x lo4 V cm-') the charge density is 
approximately constant at the injector. On the other hand electrodes covered with 
appropriate electrodyalitical membranes or varnishes behave as strong injectors [5], 
being quite possible to  reach the space-charge-limited-current (SCLC) regime, charac- 
terized by q, = 00 or equivalently E,  = 0 a t  the injector. For simplicity the hypothesis 
of autonomous injection is usually adopted, i.e., q = q, a t  the emitter independently 
of E .  Also we assume that the collector is a completely open electrode. Anyway the 
effect of giving a more realistic ejection law would be to  produce, a t  most, charge- 
diffusive boundary layers a t  the collector, without affecting the mainstream solution of 
our problem. It should be noted that this latter condition has to  be applied only when 
diffusion cannot be neglected and this will only happens in some limiting situations 
(see [6] for a detailed discussion). 

3. Instabilities and chaos 

3.1, Linear instability 

For isothermal dielectric liquid layers, under DC conditions, the dominant electric 
force is the Coulomb force, q E .  In general geometries it is not possible to have a 
motionless state for the liquid because of the rotational nature of the electric forces. 
For simple boundary conditions this is possible only in planar, cylindrical and spherical 
geometries. For these situations the charge density decreases away from the injector. 
This is a potentially unstable situation, and it is quite similar to  the Rayleigh-Benard 
problem. In effect, the heuristic argument of Rayleigh may be translated 'literally' 
with the only difference that the relaxation time for the displaced parcel, of size d ( d  
being the distance between the electrodes) is now due to Coulomb repulsion instead 
of molecular diffusion (see [7] for a detailed discussion of Rayleigh's argument) 

6q E d 3  

t 
(differential Coulomb force] mdragl 
where w is the perturbed velocity, W T  the distance travelled by the particle before the 
charge relaxes and 77 the dynamic viscosity. Thus at  the unstable equilibrium point 
T 2 O( 1) with T = E ~ , / I < v  the electrical stability parameter. This rough estimate 
does not give any quantitative value of the critical stability parameter, but merely 
singles out the appropriate combination of parameters. As K q  N Cte according to 
Walden's law the physical magnitude characterising stability is the electrical potential. 
The numerical values of T, depends on the non-dimensional injection strength C given 
by C = qod2/c+,. See [8-101 for quantitative values in planar, spherical and cylindrical 
geometries. For SCLC regime in planar layers is T, 2: 161 whereas the experiments give 
a value of T, N 100. This discrepancy, due probably to  the simplicity of the model, 
remains to  be explained. 

The analogy with the Rayleigh-Benard problem extends also to other situations 
where we have rotation [ll], Taylor-Couette flow [12] or forced parallel flows [13,14]. 
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3.2. Non-linear behaviour 

The analogy to  the Rayleigh-Benard problem is no longer valid for the liquid in 
motion [15]. The bifurcation around the linear criterion is subcritical and there exists 
a non-linear criterion. Associated with these two criteria there is a hysteresis loop, a t  
which discontinuities occur in the steady-state current and velocity amplitude. This 
behaviour may be easily understood, a t  least qualitatively, from the averaged Navier- 
Stokes equation. Near the instability thresholds, inertial effects may be neglected and 
an approximation for the velocity field, which is good within a few percent, is given 
by a self-similar convective roll. Taking as scales d for distance, do for potential, qo for 
charge and Kqh0/d for velocity, we have from the balance of driving force and viscous 
resistance [16] 

where the dimensionless velocity is v = A v o ,  with maxIwoI = 1. The solution of this 
equation gives T as a function of A ,  showing the existence of the two criteria and the 
hysteresis loop. For steady finite amplitude electroconvection is found always to  be 
A 2 1.5 and there exits an inner surface, called the separatrix, separating a region 
free of charge from a charged one. Finite-difference methods as well as modal analysis 
give precise quantitative values for these criteria. In particular modal analysis [15] has 
shown that,  in accord with experiments in the SCLC regime, the motion organizes itself 
in the form of hexagonal convective cells, where the liquid flows toward the injecting 
electrode in each cell center with a velocity greater than the ionic drift velocity. The 
computed theoretical value Tf N 110 compares favourably to  the experimental one, 
Tf N 90. 

3.3. EHD chaos 

Subsequent experimental studies in the case of the SCE regime have revealed that 
small fluctuations of the electrical current around its mean value are always present 
[17]. Unlike the case of the Rayleigh-Benard problem the liquid always passes di- 
rectly from rest to time-dependent motion. For small r = R/d ( R  being the radius of 
the electrodes) the frequency power spectra of current fluctuations a.re discrete; they 
consist of one fundamental peak f l ,  its harmonics and its subharmonics. By slightly 
increasing 4, one obtains biperiodic motion and then continuous spectra. For large 
r the spectra are always continuous but exhibit an enlarged peak corresponding to 
the same fundamental oscillation as for small r. The f l  variations with q5 have been 
studied and i t  appears to  vary in proportion to  the main velocity. An experinien- 
tal determination of the EHD strange attractor, following the Grassberger-Procaccia 
method, indicates that  its dimension increases without limit with the embedding space 
following a trend similar to that of grid turbulence [18]. This is in striking opposition 
to  the Rayleigh-Benard case where it has been established that the dimension of the 
corresponding strange attractor is of order 3. 

No theoretical explanation exists for this chaotic behaviour, with the exception of 
a proposed mechanism that  suggests that  the main frequency peak, measured in the 
fluctuations power spectra, may originate from an oscillatory instability of the finite 
amplitude steady convection in each cell. Examination of this instability is a hard 
question due to  the intricate coupling between charge and velocity fields. The much 
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simpler problem of determining the ion trajectories when a periodic velocity field is 
superimposed on the steady finite amplitude convection reveals that ion trajectories 
in EHD convection become chaotic [19]. The separatrix gives place to a heteroclinic 
tangle and a resonance chaotic layer, the latter comprising a finite region of both 
injector and collector electrodes. We conjecture that this chaotic behaviour is at  the 
basis of the chaotic behaviour of EHD flows near the instability thresholds. Numerical 
simulations using particle-type methods [20] and the method of characteristics give 
encouraging results but more studies are needed to understand this EHD chaos. 
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